BACKTRACKING

- Backtracking is an algorithmic-technique for solving problems recursively by trying to build a solution incrementally, one piece at a time, removing those solutions that fail to satisfy the constraints of the problem at any point of time. Eg: SudoKo solving Problem
- This kind of processing can very well be implemented using a state-space tree.
- Its root represents an initial state before the search for a solution begins.
- The nodes of the first level in the tree represent the choices made for the first component of a solution; the nodes of the second level represent the choices for the second component, and so on.
- A node in a state-space tree is said to be promising if it corresponds to a partially constructed solution that may still lead to a complete solution; otherwise it is called nonpromising.
- Leaves represent either nonpromising dead ends or complete solutions found by the algorithm.
- A state-space tree for a backtracking algorithm is constructed in the manner of depth first search.
- If the current node is promising, its child is generated by adding the first remaining legitimate option for the next component of a solution, and the processing moves to this child.
- If the current node turns out to be nonpromising, the algorithm backtracks to the node' s parent to consider the next possible option for its last component.

N-Queens Problem

- The problem is to place n queens on an $n \times n$ chessboard so that no two queens attack each other by being in the same row or in the same column or on the same diagonal.
- Let us consider the four-queens problem and solve it by the backtracking technique:
\checkmark Start with the empty board and then place queen 1 in the first possible position of its row, which is in column 1 of row 1.
\checkmark Then we place queen 2, after trying unsuccessfully columns 1 and 2 , in the first acceptable position for it, which is square (2,3), the square in row 2 and column 3.
\checkmark This proves to be a dead end because there is no acceptable position for queen 3.
\checkmark So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4).
\checkmark Then queen 3 is placed at (3,2), which proves to be another dead end.
\checkmark The algorithm then backtracks all the way to queen 1 and moves it to $(1,2)$.
\checkmark Queen 2 then goes to $(2,4)$, queen 3 to $(3,1)$, and queen 4 to $(4,3)$, which is a solution to the problem.
\checkmark The state-space tree of this problem is shown in below figure:

Hamiltonian Circuit Problem

- Hamiltonian path in an undirected graph is a path that visits each vertex exactly once.
- Hamiltonian circuit problem determines whether a given graph contains Hamiltonian cycle or not. If it contains, then it should print the path.
- An example problem is explained below.

\checkmark Let ' a ' be the first node in the path.
\checkmark Vertex ' b ' can be selected next.
\checkmark From ' b ', the algorithm proceeds to ' c ', then to ' d ', then to ' e ', and finally to ' f ', which proves to be a dead end.
\checkmark So the algorithm backtracks from ' f ' to e, then to d, and then to c, which provides the first alternative for the algorithm to pursue.
\checkmark Going from c to e eventually proves useless, and the algorithm has to backtrack from e to c and then to b.
\checkmark From there, it goes to the vertices f, e, c, and d, from which it can legitimately return to a, yielding the Hamiltonian circuit a, b, f, e, c, d, a.
- If we want to find another solution, the process could be backtracked from the leaf of the solution found.

Subset-Sum Problem

- The problem is finding a subset of a given set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n positive integers whose sum is equal to a given positive integer d.
- For example if $\mathrm{A}=\{2,3,4,5,12\}$, sum $=9$; the solutions are $\{\{4,5\},\{2,3,4\}\}$.
- It is convenient to sort the set's elements in increasing order.
- The state-space tree can be constructed as a binary tree as shown in below figure for the instance $A=\{3,5,6,7\}$ and $d=15$.

\checkmark The root of the tree represents the starting point, with no decisions about the given elements made as yet.
\checkmark Its left and right children represent, respectively, inclusion and exclusion of a_{1} in a set being sought.
\checkmark Similarly, going to the left from a node of the first level corresponds to inclusion of a_{2} while going to the right corresponds to its exclusion, and so on.
\checkmark Thus, a path from the root to a node on the i th level of the tree indicates which of the first i numbers have been included in the subsets represented by that node.
\checkmark The value of s, the sum of these numbers, is recorded in the node.
\checkmark If s is equal to d, the solution is reached.
\checkmark The problem can be stopped there or, if all the solutions need to be found, continue by backtracking to the node's parent.
\checkmark If s is not equal to d, we can terminate the node as nonpromising.

